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Abstract—Accurate predicting the remaining useful life of 

lithium-ion batteries is essential for the market of Electrical 

Vehicles (EVs) and the battery industry. However, diverse ageing 

processes, substantial battery variability, and dynamic operating 

circumstances are identified as main challenges for predicting the 

remaining useful life (RUL) of lithium-ion batteries (LIBs). This 

study proposes a machine learning solution for estimating the RUL 

of LIBs by using a Convolutional neural network (CNN) model with 

an extra Long Short-term memory (LSTM) layer. The developed 

CNN-LSTM model is trained by a dataset containing data extracted 

from 124 commercial lithium-ion batteries cycled under fast-

charging conditions. In this study, we use only 100 cycles to predict 

the remaining cycles. The developed model achieved a competitive 

loss value of 0.0206 and the mean absolute error value was 0.1099 

for the current cycle of the battery and 0.0741 for the remaining 

ones. 

Keywords—convolution neural network, Lithium-ion battery, 

remaining useful life, long short-term memory, electrical vehicle 

I. INTRODUCTION

The global market for electric vehicles (EVs) would have a 
total revenue of 802.81 billion dollars in 2027, demonstrating  a 
rising demand for battery production, management, storage, and 
recycling [1]. LIBs are the primary energy source for EV 
manufacturers and suppliers because of their high efficiency and 
low cost [2], which presents an excellent opportunity  for the 
development of LIBs. At the same time, evaluating  the health 
condition of LIBs is significantly important in complying with 
the safety-critical and energy-efficient criteria. In order to 
evaluate the health status of LIBs, various indicators have been 
used such as state of charge (SOC) [3], state of health (SOH) 
[4], [5], and remaining useful life (RUL). RUL will be used to 
demonstrate the performance of LIB. However, the traditional 
RUL prediction methods (Support Vector Machine [6], Gaussian 
process regression [7]) are time- consuming and economically 
expensive. 

Therefore, a quick and accurate prediction method is needed 
to estimate the RUL using the early-stage test cycle data. For 
example, if the RUL of a LIB with 1500 life cycles could  
be estimated using the first 200 cycles, the remaining 1300 
cycles could be averted; thus, it could save 86% of time and 
cost. In this study, a convolutional neural network (CNN)              
combined with a long short term memory (LSTM) approach has 
been used based on the parameters operated by feature selection 
from a public experimental dataset [8] containing 124 fast-

charge commercial LIBs under 30°C. The dataset is 
detailed in Section III. In summary, the main contribution 
of this study is developing a robust CNN-LSTM model for 
predicting the RUL. The model was developed with detailed 
features (linearly interpolated temperature (Tdlin), linearly 
interpolated discharge capacity (Qdlin)) and scalar features 
(Internal Resistance (IR), Quantity of discharge (QD) and 
Discharge Time (T)). The developed CNN-LSTM model is 
compared with a CNN model and the results are reported in 
Section IV. 

The remaining of this paper is as follow; in the next 
section the similar studies are investigated, the developed 
method is explained in Section III followed by the results in 
Section IV, and finally this study is concluded in Section V. 

II. LITERATURE REVIEW

Statistical and machine learning techniques have emerged 
into the frontier research because of the advanced computing 
power enhanced by the graphics-processing unit. For instance, 
a support vector machine (SVM) is commonly used in linear 
and non-linear systems because of its capability to map the 
input parameters to a higher level feature space through the 
kernel. Klass et al. has proposed SVM based on the state-of-
health estimation method that extracts the parameters like 
current, voltage and temperatures. Patil et al. [9] combined 
the classification model providing gross estimation and SVM 
regression model to predict the RUL of batteries, when the 
battery is closed to the end of life, with features extracted  
from voltage and temperature profiles. This model achieved 
an RMSE of 0.357. 

Artificial neural networks is another approach for 
predicting the state of health (SoH) of LIBs. Rastegarpanah et 
al. developed a neural network model to predict the SoH for 
high power lithium-ion batteries based on the preditors, 
parameters extracted from the impedance data of 13 Nissan 
Leaf 2011 battery modules. This model predicted the state of 
health with a root mean square error of (1.729 ± 0.147), which 
is a competitive result compared to other NN models [10]. 

CNN is a network model that Lecun et al. proposed in 
1998  [11]. CNN is a type of neural feed-forward network that 
has been commonly used in applications like image 
processing  and natural language processing. It has been used 
to predict time-series effectively. CNN substantially 
minimises the local perceptually and weight sharing, therefore 
boosting the model- learning performance. Yang proposed a 
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hybrid CNN method, made of a 3D CNN, to combine the voltage, 
current and  temperature curves (V/I/T), and a 2D CNN to find 
the hidden features behind them. As a result, 1.1% test error for 
early prediction of battery life and 3.6% for RUL was 
observed  [12]. Even though the CNN method could achieve a 
good performance regarding the multi-dimension features, it 
has  no capability in handling the features that contain time-series 
related information. 

The recurrent neural network (RNN) is commonly adapted to 
train a model for a time-series dataset. Liu et al. demonstrated 
that an adaptive recurrent neural network (ARNN) produces 
better learning results than classical machine learning algorithms, 
such as relevance vector machine and particle filter [13]. 
However, the traditional RNN could not work with long time 
dependencies that were commonly existed among the parameters 
for the early-cycle dataset. Long short-term memory (LSTM), a 
special type of RNN, was introduced to solve these problems. 
It was developed by Schmidhuber et  al. in 1997 [14]. It was 
created to address the long-standing problems of gradient 
expansion and gradient disappearance in RNN. It has been 
frequently utilised in applications like speech recognition, 
emotional analysis, and text analysis since it has its memory and 
can do pretty accurate forecasts, which could also be applied to 
battery assessment. LSTM is an appropriate method for 
predicting the RUL as it has capability to handle the features with 
time-series. LSTM memory cell includes  three main cores: the 
forgotten gate, the input gate and the output gate. Mamo et al. 
developed an LSTM model with using an attention mechanism 
to predict the charging status of two LIBs, and the results 
suggested reasonable predictive root mean square errors of 
0.9593, 0.8714, and 0.9216 at three different temperatures [15]. 
In order to improve the accuracy and  performance of the RUL, 
Long et al. proposed an auto-LSTM model that tunes the 
hyperparameters into a feature selection [16]. The method has 
been tested on both NASA and CALCE datasets [17] showing a 
good result for promoting random search and tree Pazen 
estimator on most cases for predicting the state of health of LIBs 
[16]. Uncertainty quantification is another core research field for 
predicting the RUL. Liu et al. developed an LSTM model to 
estimate the remaining Gaussian  process regression for learning 
the correction from time-series data [18]. With respect to the 
advantages of machine learning methods in predicting the RUL 
of LIBs, a CNN model with an extra LSTM layer for early 
prediction of the cycle life of LIBs and their RUL using early 
cycle data is proposed in this study. 

III. MATERIALS AND METHODS

A. Data Library

This study has used the data extracted from 124 commercial
LIBs, which has cycled to failure under fast-charging conditions. 
Each cell has a capacity of 1.1 Amp hours and a voltage of 3.3V. 
Each battery (cell) has three types of data: (i) the descriptive data 
which includes charging policy, cycle life; (ii) the summary 
data that shows the information based on the cycle level; 
including cycle number, discharge capacity, charge capacity, 
internal resistance, maximum temperature,  average temperature, 
minimum temperature and charge time; (iii) the cycle data 
consisted of important information such as time, charge capacity, 
current, voltage, temperature, discharge capacity and linearly 

interpolated discharge capacity (Qdlin) and linearly 
interpolated temperature (Tdlin). 

B. Feature Selection

Quantity of discharge (QD) and discharge time are main
parameters in predicting the RUL and evaluating the 
performance of LIBs. In this study, we investigate the 
influence of these parameters individually and interaction of 
them on RUL. IR is a standard indicator for predicting the 
RUL of LIBs because of its effect on the polarization of 
positive and negative electrodes which could lead to battery 
degradation [19]. The cycle increment is linearly proportional 
with IR (Fig. 1.a). Also, as shown in Fig. 1.b the profile of 
charge and discharge of a battery cell had the same trend. 
Linear interpolation is  a proper method to apply to discrete 
datasets. Wu et al. has proven that it is practical to use linear 
interpolation to reduce the training samples [20]. As shown in 
Fig. 2.a, for the same cycle period of the same battery, the 
Qdlin is smoother than the quantity of charge (Qc). Under the 
same circumstance, Tdlin is also a better indicator than using 
the temperature itself  because it has less noise which will 
improve the accuracy  for model prediction. As shown in Fig. 
2.b, the minimum and maximum temperatures are 29.85◦ and
34.30◦ for T, and 29.84◦ and 34.16◦ for Tdlin; that shows the
minimum and maximum values for T and Tdlin are
approximately the same (Fig. 2).

C. Input Dataset Collection

In this study, five necessary parameters (IR, QD, Qdlin,
Tdlin and Discharge Time) have been used to train the 
machine learning models. The input dataset should contain 
these five feature parameters and additional information from 
the battery cells such as current battery cycle of the cell and 
the remaining cycles which have been used for training, 
predicting and testing. After creating the input data pipe, now 
each data unit contains the feature parameters and cycle 
information. 

D. Convolutional Neural Network Model

This CNN model used Qdlin and Tdlin as detailed features
and IR, QD and discharge time as scalar features. Prior 
to generating the CNN model, some other parameters were 
calculated and defined such as number of filters, window size, 
strides, learning rate, steps, kernel size of 2D and 1D, dense 
layer number units etc. 

The model takes two detail features input layers with 
a  window size of 100; after concatenating the detail features, 
a 100×32 2D conventional layer is performed with 32 filters. 
Then, a 2×1 max-pooling is operated, followed by a 2D 
conventional layer with 64 filters. At the same time, the scalar 
features have been concatenated and adapted 1D conventional 
layer with 32 filters, followed by another 1D conventional 
layer with 64 filters. Then, a 1D max-pooling is added. All 
detailed (Qdlin and Tdline) and scalar features are followed 
by flattening layers, preceding with dropout layers. These two 
different features are concatenated together, and the above 
procedure was repeated. The detailed structure of the 
developed CNN model is depicted in Fig. 3.
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(a) Internal Resistance

(b) Quantity of Charge vs Qdlin

Fig. 1. Feature Selection for IR and Quantity of Charge 

(a) Quantity of Charge vs Qdlin

(b) Discharge Time-T(°C) vs linearly interpolated temperature-
Tdlin (°C)

Fig. 2. Linearly interpolated Qdlin and Tdlin vs their original parameters 

The neural network model was trained in Python using 
TensorFlow 2 machine learning library [21] with a learning rate 
of 0.001, 0.3 for drop out rate (preventing over-fitting for the 
small dataset) and rectified linear activation function for dense 
and output layers. 

E. CNN-LSTM Model

The CNN model can handle the selected features (Qdlin,
Tdlin, IR, QC and Discharge time in this study); however, it 
has no capability to expand based on the hidden time features 
inside Qdlin and Tdlin, while LSTM has this advantage to cope 
with these features. Therefore, the traditional CNN model (as 
explained in section III.D) has no capability to predict the RUL 
of LIBs effectively. Therefore, in this study a CNN-LSTM model 
is proposed to predict the URL of LIBs. 

The developed CNN-LSTM model uses the same detailed 
features (Qdlin and Tdlin), used in the CNN model, as significant 
input and the scalar features (IR, QC and Discharge Time) with 
an input layer consisting of window size of 100. In comparison 
with the 2D conventional layer in the CNN model, this CNN-
LSTM adopts a time distributed 1D conventional layer with 32 
filters. Time distributed layer is functional, working with time-
series data, which allows a single layer to apply to each input 
and then let the LSTM layer to help and to manage the time 
data. Then, a time distributed max- pooling layer is operated to 

reduce the output size. Another 1D time-distributed 
conventional layer containing 64 filters repeats the above 
process, followed by a flattening and a drop out layer. More 
importantly, the scalar features have concatenated with the 
Qdlin and Tdline. After processing the CNN part, an LSTM 
layer with 128 units and the hyperbolic tangent activation 
function (tanh) were applied to the concatenated one. A dense 
output layer was obtained working with an LSTM dropout 
and the hidden dense layer consisting of 32 units. The 
structure of the developed CNN-LSTM model is depicted in 
Fig. 4. The neural network model was trained in Python using 
TensorFlow 2 machine learning library [21] with  a learning 
rate of 0.001 for CNN layer, 0.3 for LSTM drop out rate 
(which prevents from over-fitting of a small dataset) and 
rectified linear activation function for the dense and output 
layers. 

IV. RESULTS AND DISCUSSION

In order to evaluate the performance of the developed 
CNN- LSTM model, the results are compared with those of 
obtained from the CNN model. The data pipeline has been 
divided into two parts: train dataset and validation dataset. 
Train dataset fits both the CNN model and the CNN-LSTM 
model, and the validation dataset evaluates the models. 
Typically, mean absolute error (MAE) measures the errors (e) 
between paired observations under the same condition and it 
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is formulated in (1). For the CNN-LSTM model, 1,008,386 
variables have been  trained, and the result after five epochs is 
shown in Table I. The MAE has been applied to both current 
(MAE CURRENT) and remaining cycles (MAE REMAINING). 

   𝑀𝐴𝐸 =
1

𝑛
∑|𝑒𝑡|

𝑛

𝑡=1

                                        (1) 

 

 

Fig. 3. Full-structure interpretation of the CNN model: 2D Convolution layer 

handles Qdlin and Tdlin, 1D Convolution layer handles IR, QD and Discharge 

Time. 

TABLE I: MAE RESULTS FOR CNN-LSTM 

Epoch Loss Value MAE CURRENT MAE REMAINING 

1 0.0347 0.1308 0.1190 

2 0.0215 0.1147 0.0824 

3 0.0209 0.1140 0.0775 

4 0.0185 0.1107 0.0716 

5 0.0194 0.1099 0.0741 

 

Fig. 4. Full-structure interpretation of the CNN-LSTM model: The 

Convolution layer handled Qdlin and Tdlin and concate- nated with IR, 

discharge time and QD followed by LSTM. 

For training the CNN model 1,411,458 variables have 
been used and the result after five epochs is shown in Table 
II. 

Another important measurement matrix for predicting the 
RUL is the mean absolute percentage error (MAPE), which 
calculates the accuracy of the prediction in percentage. MAPE 
is calculated by (2): 

TABLE II: MAE RESULTS FOR CNN 

Epoch Loss Value MAE CURRENT MAE REMAINING 

1 0.0357 0.1368 0.1307 

2 0.0336 0.1299 0.1215 

3 0.0312 0.1329 0.1119 

4 0.0283 0.1272 0.1028 

5 0.0267 0.1247 0.1026 

 

                     𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑒𝑡

𝑦𝑡
|                                  (2)

𝑛

𝑡=1

 

 
Where n represents the number of fitted points, e 

represents the difference between the actual value and the 
predicted value, and y demonstrates the actual value. 

For the CNN-LSTM model and the CNN model, 
1,008,386 variables and 1,411,458 variables have been 
trained respectively, and the results after five epochs are 
depicted in Table III and Table IV. 
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TABLE III: MAPE RESULTS FOR CNN-LSTM 
 

Epoch Loss Value MAPE CURRENT MAPE REMAINING 

1 0.0299 12.3921 10.5403 

2 0.0197 11.1105 7.4877 

3 0.0216 11.6464 8.2188 

4 0.0202 11.2576 7.5537 

5 0.0186 10.9457 6.9226 

 
As shown in Table III, the difference between current cycles 

and remaining ones is high compared with other epochs, and 
this is caused by the employed LSTM layer which has a great 
capability for handling the time-series data. However, as 
shown in Table I and Table II, the MAE difference for the current 
cycles of the CNN model and the CNN-LSTM model is small 
(0.01 in average) which indicates the efficacy of the CNN-LSTM. 
Since the scalar features were not completely added into the 
CNN model, the feature itself may contain hidden information 
which could be used to increase the performance of MAE. 

TABLE IV: MAPE RESULTS FOR CNN 
 

Epoch Loss Value MAPE CURRENT MAPE REMAINING 

1 0.0364 13.7522 12.9190 

2 0.0274 12.4028 10.1061 

3 0.0280 12.6283 9.9091 

4 0.0258 12.1370 9.3340 

5 0.0256 12.5660 8.9049 

 

In summary, the results suggested that the developed CNN- 
LSTM model outperformed the CNN model. The minimum 
MAE value for the current cycle of the CNN-LSTM model was 
0.1099 (Table I), while its counterpart in the CNN model was 
0.1247 (Table II). In addition, the MAPE results confirmed the 
better performance of the CNN-LSTM model, by lowest MAPE 
value of 10.9457 for the current cycle (Table III), than the CNN 
model with a minimum MAPE value of 12.1370 (Table IV). It is 
clear that with the increased number of epochs, the performance 
is enhanced due to the effectiveness of the model. 

V. CONCLUSION 

This paper proposes a conventional neural network with 
a long short-term memory layer for predicting the RUL of LIBs. 
An extra LSTM layer increases the accuracy of the prediction 
model, and this is validated by comparing results of the 
developed CNN-LSTM model with those of obtained from the 
CNN model, using the same detailed features (Qdlin, Tdlin) and 
the scalar features (IR, QC, and discharge time). The dataset was 
made of data extracted from 124 LIBs. The results (MAE and 
MAPE) suggested that the CNN-LSTM model outperformed the 
CNN model in predicting the RUL.  At the same time, the MAE 
and MAPE results are highly competitive compared with other 
prediction methods; mainly because of effectiveness 
specification of the CNN model in handling the features, and 
advantage of LSTM in handling the time-series data. In future, 
Deep learning model will be developed for predicting the RUL 
and the results will be compared with those of obtained from the 
CNN-LSTM model. 
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